Answer: [tex]1,542,682\ cm^3[/tex]
Step-by-step explanation:
Given
The ratio of two similar figures is 169:289
Suppose, their length ratio is x:y
[tex]\therefore \dfrac{x^2}{y^2}=\dfrac{169}{289}\\\\\Rightarrow \dfrac{x}{y}=\dfrac{13}{17}[/tex]
Similarly, cube of the ratio is equal to the volume ratio
[tex]\Rightarrow \left(\dfrac{13}{17}\right)^3=\dfrac{689,858}{V}\\\\\Rightarrow V=689,858\times \dfrac{17^3}{13^3}\\\\\Rightarrow V=314\times 17^3\\\\\Rightarrow V=1,542,682\ cm^3[/tex]
Thus, the volume of the larger solid is [tex]1,542,682\ cm^3[/tex]