Respuesta :

Answer:

[tex]x=4; \ y=\frac{8}{\sqrt{3}}.[/tex]

Step-by-step explanation:

1) in the triangle with the angles 45; 90 and 45°: x=4√2/√2=4;

2) in the triangle with the angles 60; 90 and 30°: y=x/sin60°= 4/(√3/2)=8/√3

Answer:

x = 32 y=[tex]\frac{8}{\sqrt{3} }[/tex]

Step-by-step explanation:

solving for x

take 45 degree as reference angle

using sin rule

sin 45 = opposite / hypotenuse

[tex]\frac{1}{\sqrt{2} } = \frac{x}{4\sqrt{2} }[/tex]

do cross multiplication

[tex]4\sqrt{2} * 1 = x * \sqrt{2}[/tex]

[tex]\frac{4\sqrt{2} }{\sqrt{2} } = x[/tex]

root 2 and root 2 gets cancel.Then ,

x = 4

solving for y

take 60 degree as reference angle

using sin rule

sin 60 = opposite / hypotenuse

[tex]\frac{\sqrt{3} }{2} = \frac{x}{y}[/tex]

just now we found the value of x i.e 4 now substitute the value of x here.

[tex]\frac{\sqrt{3} }{2} = \frac{4}{y}[/tex]

do cross multiplication

[tex]2*4 = y * \sqrt{3}[/tex]

[tex]\frac{8}{\sqrt{3} } = y[/tex]