Solve the variables. See the photo below.

Answer:
[tex]x=4; \ y=\frac{8}{\sqrt{3}}.[/tex]
Step-by-step explanation:
1) in the triangle with the angles 45; 90 and 45°: x=4√2/√2=4;
2) in the triangle with the angles 60; 90 and 30°: y=x/sin60°= 4/(√3/2)=8/√3
Answer:
x = 32 y=[tex]\frac{8}{\sqrt{3} }[/tex]
Step-by-step explanation:
solving for x
take 45 degree as reference angle
using sin rule
sin 45 = opposite / hypotenuse
[tex]\frac{1}{\sqrt{2} } = \frac{x}{4\sqrt{2} }[/tex]
do cross multiplication
[tex]4\sqrt{2} * 1 = x * \sqrt{2}[/tex]
[tex]\frac{4\sqrt{2} }{\sqrt{2} } = x[/tex]
root 2 and root 2 gets cancel.Then ,
x = 4
solving for y
take 60 degree as reference angle
using sin rule
sin 60 = opposite / hypotenuse
[tex]\frac{\sqrt{3} }{2} = \frac{x}{y}[/tex]
just now we found the value of x i.e 4 now substitute the value of x here.
[tex]\frac{\sqrt{3} }{2} = \frac{4}{y}[/tex]
do cross multiplication
[tex]2*4 = y * \sqrt{3}[/tex]
[tex]\frac{8}{\sqrt{3} } = y[/tex]