[tex]\implies {\pink {\boxed {\boxed {\purple {\sf { \: x = \frac{2}{7}}}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
Let [tex]x[/tex] be the unknown number.
As per the question, we have
[tex] \: ( \frac{3}{7} \times \frac{2}{5} ) - x = \frac{ - 4}{35} [/tex]
➺[tex] \: \frac{6}{35} - x = \frac{ - 4}{35} [/tex]
➺[tex] \: - x = \frac{ - 4}{35} - \frac{6}{35} [/tex]
➺[tex] \: - x = \frac{ - 4 - 6}{35} [/tex]
➺[tex] \: - x = \frac{ - 10}{35} [/tex]
➺[tex] \: x = \frac{2}{7} [/tex]
Therefore, [tex] \frac{2}{7} [/tex] should be subtracted from the product of [tex] \frac{3}{7} [/tex] and [tex] \frac{2}{5} [/tex] to get [tex]\frac{ - 4}{35} [/tex].
[tex]\large\mathfrak{{\pmb{\underline{\orange{To\:verify}}{\orange{:}}}}}[/tex]
[tex] \: ( \frac{3}{7} \times \frac{2}{5} ) - x = \frac{ - 4}{35} [/tex]
➼[tex] \: ( \frac{6}{35} ) - \frac{2}{7} = \frac{ - 4}{35} [/tex]
➼[tex] \: \frac{6}{35} - \frac{2 \times 5}{7 \times 5} = \frac{ - 4}{35} [/tex]
➼[tex] \: \frac{6 - 10}{35} = \frac{ - 4}{35} [/tex]
➼[tex] \: \frac{ - 4}{35} = \frac{ - 4}{35} [/tex]
➼[tex] \: L.H.S.=R. H. S[/tex]
[tex]\sf\purple{Hence\:verified. }[/tex]
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{☂}}}}}[/tex]