Respuesta :

Answer:

[tex]\boxed{x=5},x=-9[/tex]

Step-by-step explanation:

To rid the denominators, multiply both sides by [tex](x-3)(x+1)[/tex].

We get:

[tex]6(x+1)-12(x-3)=(x-3)(x+1)[/tex]

Simplifying, we have:

[tex]6x+6-12x+36=x^2-3x+x-3,\\-6x+42=x^2-2x-3,\\x^2+4x-45=0[/tex]

Solving, we get:

[tex]x^2+4x-45=0,\\(x-5)(x+9)=0,\\x=5,x=-9[/tex]

Therefore, the solution with the greatest value is [tex]x=\boxed{5}[/tex]