A laser beam is incident on two slits with a separation of 0.180 mm, and a screen is placed 5.05 m from the slits. If the bright interference fringes on the screen are separated by 1.62 cm, what is the wavelength of the laser light

Respuesta :

Answer:

The answer is "530 nm".

Explanation:

[tex]d=0.180 \ nm=0.180 \times 10^{-3} \ m\\\\L= 5.05\ m\\\\\Delta y= 1.62\ cm= 1.62 \times 10^{-2} \ m\\\\[/tex]

Using formula:

[tex]\Delta y=\frac{\lambda L}{d}\\\\\lambda =\frac{d\Delta y}{L}\\\\[/tex]

  [tex]=\frac{0.180 \times 10^{-3} \times 1.62 \times 10^{-2} }{5.05}\\\\=5.30 \times 10^{-9} \times \frac{1 \ nm}{10^{-9} \ m}\\\\=530 \ nm[/tex]