Respuesta :

Answer:

[tex]EF = 18[/tex]

Step-by-step explanation:

Given

[tex]\triangle DE\ F[/tex] similar to [tex]\triangle JHI[/tex]

Required

Find [tex]EF[/tex]

[tex]\triangle DE\ F[/tex] similar to [tex]\triangle JHI[/tex] implies that:

The corresponding sides are:

[tex]DE \to JH[/tex]

[tex]DF \to JI[/tex]

[tex]EF \to HI[/tex]

[tex]FG \to IK[/tex]

First, solve for x using the following corresponding ratios

[tex]EF : HI = FG : IK[/tex]

This gives:

[tex]x + 8 : 3x - 2 = 9 : 14[/tex]

Express as fraction

[tex]\frac{x + 8 }{ 3x - 2} = \frac{9 }{ 14}[/tex]

Cross multiply

[tex]14(x + 8) = 9(3x - 2)[/tex]

Open brackets

[tex]14x + 112 = 27x - 18[/tex]

Collect like terms

[tex]27x - 14x = 112 + 18[/tex]

[tex]13x = 130[/tex]

Solve for x

[tex]x = 10[/tex]

In the diagram, we have:

[tex]EF = x +8[/tex]

[tex]EF = 10 +8[/tex]

[tex]EF = 18[/tex]