Respuesta :

[tex] \boxed{(6, -3)} [/tex]

Step-by-step explanation:

Given the ratio 5:3

and Points A and B where A is located at (-6, 3), and B is located at (26, -13).

Let point A be [tex] (x_{1}, y_{1}) [/tex], and let point B be [tex] (x_{2}, y_{2}) [/tex].

(-6, 3) → [tex] (x_{1}, y_{1}) [/tex].

(26, -13) → [tex] (x_{2}, y_{2}) [/tex].

Let 5 be n, and 3 be m.

5:3 → n:m

[tex] (\frac{nx_{1} + mx_{2}}{n+m}, \frac{ny_{1} + my_{2}}{n + m}) [/tex].

To solve, just substitute these variables into the expressions of these coordinates to get the answer.

[tex] (\frac{nx_{1} + mx_{2}}{n+m}, \frac{ny_{1} + my_{2}}{n + m}) [/tex] →

[tex] (\frac{(5)x_{1} + (3)x_{2}}{(5)+(3)}, \frac{(5)y_{1} + (3)y_{2}}{(5) + (3)}) [/tex] →

[tex] (\frac{(5)(-6)+ (3)(26)}{(5)+(3)}, \frac{(5)(3)+ (3)(-13)}{(5) + (3)}) [/tex] →

[tex] (\frac{-30 + 78}{8}, \frac{15+ -39}{8}) [/tex] →

[tex] (\frac{78 – 30}{8}, \frac{15 – 39}{8}) [/tex] →

[tex] (\frac{48}{8}, \frac{-24}{8}) [/tex]

[tex] (\frac{6}{1}, \frac{-3}{1}) [/tex]

[tex] (6, -3) [/tex].

Thus the coordinates of B are:

[tex] \boxed{(6, -3)} [/tex]

Answer:

Step-by-step explanation:

AB:BC::5:3

let the coordinates be (x,y)

[tex]x=\frac{nx1+mx2}{m+n} \\=\frac{3(-6)+5(26)}{5+3} \\=\frac{-18+130}{8} \\=\frac{112}{8} \\=14\\y=\frac{ny1+my2}{m+n} \\=\frac{3(3)+5(3)}{5+3} \\=\frac{9+15}{8} \\=\frac{24}{8} \\=3\\[/tex]

coordinates of B are (14,3)