Answer: The temperature at pressure of 635.7 kPa is [tex]2033^0C[/tex]
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 107.4 kPa
[tex]P_2[/tex] = final pressure of gas = 635.7 kPa
[tex]V_1[/tex] = initial volume of gas = [tex]515cm^3[/tex]
[tex]V_2[/tex] = final volume of gas = [tex]644cm^3[/tex]
[tex]T_1[/tex] = initial temperature of gas = [tex]38.6^0C=(38.6+273)K=311.6K[/tex]
= final temperature of gas = ?
Now put all the given values in the above equation, we get:
[tex]\frac{107.4\times 515}{311.6}=\frac{635.7\times 644}{T_2}[/tex]
[tex]T_2=2306K=(2306-273)^0C=2033^0C[/tex]
The temperature at pressure of 635.7 kPa is [tex]2033^0C[/tex]