Anika is hiking on a rectengular trail at the nation park there are four resting spots along the corners of the trail on the map they are marked with coordinates of -2,2) 1,2) 1,-2) and -2,-2 if rach unit represents 1 mile find the perimiter of the trail in miles using the coordinates

Respuesta :

Answer:

The perimeter is 14 units

Step-by-step explanation:

Given

[tex]A = (-2,2)[/tex]

[tex]B = (1,2)[/tex]

[tex]C = (1,-2)[/tex]

[tex]D = (-2,-2)[/tex]

Required

Determine the perimeter

To do this, we simply calculate the distance between the sides of the rectangle i.e. AB, BC, CD and DA.

Distance (d) is calculated using:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

For AB

[tex]A = (-2,2)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]B = (1,2)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]AB = \sqrt{(-2 - 1)^2 + (2 - 2)^2} = \sqrt{9} = 3[/tex]

For BC

[tex]B = (1,2)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]C = (1,-2)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]BC = \sqrt{(1-1)^2 + (2--2)^2} = \sqrt{16} = 4[/tex]

For CD

[tex]C = (1,-2)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]D = (-2,-2)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]CD = \sqrt{(1 - -2)^2 + (-2 -- 2)^2} = \sqrt{9} = 3[/tex]

For DA

[tex]D = (-2,-2)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]A = (-2,2)[/tex]  --- [tex](x_2,y_2)[/tex]

[tex]DA = \sqrt{(-2--2)^2 + (-2-2)^2} = \sqrt{16} = 4[/tex]

So, the perimeter (P) is:

[tex]P = AB + BC + CD + DA[/tex]

[tex]P = 3 +4 + 3 + 4[/tex]

[tex]P = 14[/tex]

The perimeter is 14 units