If x is an acute angle, and tan x=3/4
evaluate
COS x-sin x/COS x+ sin x
please answer fast 10 points and brainliest answer​

Respuesta :

Use the pic and solve the COS x-sin x/COS x+ sin x part

comment if there's something u don't understand

Ver imagen IsuruYahampath

The value of (cosx-sinx)/(cosx+sinx) is 1/7 if the x is an acute angle, and tan x=3/4

What is trigonometry?

Trigonometry is a branch of mathematics that deals with the relationship between sides and angles of a right-angle triangle.

We have:

tanx = 3/4        (x is an acute angle)

[tex]\rm \dfrac{sinx}{cosx}=\dfrac{3}{4} \\\\\ \rm \dfrac{cosx}{sinx}-1=\dfrac{4}{3}-1\\\\\rm \dfrac{cosx-sinx}{sinx}=\dfrac{1}{3}\\\\[/tex]  ….(1)

[tex]\rm \dfrac{sinx}{cosx}=\dfrac{3}{4} \\\\\ \rm \dfrac{cosx}{sinx}+1=\dfrac{4}{3}+1\\\\\rm \dfrac{cosx+sinx}{sinx}=\dfrac{7}{3}\\\\[/tex]  …(2)  

Divide (1) ÷ (2)

(cosx-sinx)/(cosx+sinx)  = (1/3)/(7/3) = 1/7

Thus, the value of (cosx-sinx)/(cosx+sinx) is 1/7 if the x is an acute angle, and tan x=3/4

Learn more about trigonometry here:

brainly.com/question/26719838

#SPJ2