Respuesta :

Given:

A circle with center Z and the points W, X, Y are on the circumference of the circle.

To find:

The measure of angle WXY.

Solution:

From the given figure, we get

[tex]Arc(XY)=156^\circ[/tex]

[tex]Arc(WX)=86^\circ[/tex]

The measure of arc of the complete circle is 360 degrees.

[tex]Arc(WX)+Arc(XY)+Arc(WY)=360^\circ[/tex]

[tex]86^\circ+156^\circ+Arc(WY)=360^\circ[/tex]

[tex]Arc(WY)=360^\circ-86^\circ-156^\circ[/tex]

[tex]Arc(WY)=118^\circ[/tex]

The measure of arc WY is 118 degrees. It means the central angle on this arc is also 118 degrees.

[tex]m\angle WZY=118^\circ[/tex]

According to the central angle theorem, the inscribed angle on an arc is always half of its central angle.

[tex]m\angle WXY=\dfrac{m\angle WZY}{2}[/tex]

[tex]m\angle WXY=\dfrac{118^\circ}{2}[/tex]

[tex]m\angle WXY=59^\circ[/tex]

Therefore, the correct option is A.