Consider the functions k(x) = x + 1, m(x) = x - 4, n(x) = x + 5, and f(x) = k(x) • m(x) · n(x). a. Determine the degree of the function f(x).​

Respuesta :

Answer:

[tex]Degree = 3[/tex]

Step-by-step explanation:

Given

[tex]k(x) = x + 1[/tex]

[tex]m(x) = x - 4[/tex]

[tex]n(x) = x + 5[/tex]

[tex]f(x) = k(x) * m(x) * n(x)[/tex]

Required

The degree of f(x)

First, calculate f(x)

[tex]f(x) = k(x) * m(x) * n(x)[/tex]

[tex]f(x) = (x +1) * (x - 4) * (x + 5)[/tex]

Expand

[tex]f(x) = (x +1) * (x^2 - 4x + 5x - 20)[/tex]

[tex]f(x) = (x +1) * (x^2 + x - 20)[/tex]

Further Expand

[tex]f(x) = x^3 + x^2 - 20x +x^2 + x - 20[/tex]

Collect like terms

[tex]f(x) = x^3 + x^2 +x^2 - 20x + x - 20[/tex]

[tex]f(x) = x^3 + 2x^2 - 19x- 20[/tex]

The degree of f(x) is the highest power of x.

Hence:

[tex]Degree = 3[/tex]