Respuesta :

leena

Hi there!

To solve, we must use the following trig identity:

sin(u - v) = sin(u)cos(v) - sin(v)cos(u)

We can rewrite the left hand side of the equation as:

[tex]\frac{sin(u)cos(v)-sin(v)cos(u)}{sin(u)cos(v)}[/tex]

Split the fraction:

[tex]\frac{sin(u)cos(v)}{sin(u)cos(v)} - \frac{sin(v)cos(u)}{sin(u)cos(v)} =[/tex]

First fraction reduces to 1:

[tex]1 - \frac{sin(v)cos(u)}{sin(u)cos(v)} =[/tex]

Simpify each with common arguments:

[tex]1 - tan(v)cot(u)[/tex]