Marsha wants to determine the vertex of the quadratic function f(x) = x2 – x + 2. What is the function’s vertex?

Respuesta :

luvia
that's the answers to these questions.
Ver imagen luvia

Answer:  The required vertex of the given function is [tex]\left(\dfrac{1}{2},\dfrac{7}{4}\right).[/tex]

Step-by-step explanation:  Given that Marsha wants to determine the vertex of the following quadratic function :

[tex]f(x)=x^2-x+2~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We are to find the vertex of the function (i).

We know that

the form of a vertex function g(x) is as follows :

[tex]g(x)=a(x-h)^2+k,[/tex] where (h, k) is the vertex.

From equation (i), we have

[tex]f(x)\\\\=x^2-x+2\\\\=\left(x^2-2\imes x\times\dfrac{1}{2}\right)+2\\\\\\=\left(x^2-2\imes x\times\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+2-\left(\dfrac{1}{2}\right)^2\\\\\\=\left(x-\dfrac{1}{2}\right)^2+2-\dfrac{1}{4}\\\\\\=\left(x-\dfrac{1}{2}\right)^2+\dfrac{8-1}{4}\\\\\\=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}.[/tex]

Comparing the above with the vertex form of a function, we get

the vertex of the function f(x) is  [tex]\left(\dfrac{1}{2},\dfrac{7}{4}\right).[/tex]

Thus, the required vertex of the given function is [tex]\left(\dfrac{1}{2},\dfrac{7}{4}\right).[/tex]