A rectangular sandbox is in the center of a larger rectangular back yard. The sand box
measures (x+6) feet long and 5x feet wide. The yard measures (6x+7) feet long and 8x
feet wide.
What is the area of the yard that is NOT apart of the sandbox?

Respuesta :

Answer:

(43[tex]x^{2}[/tex] - 26x) [tex]ft^{2}[/tex]

Step-by-step explanation:

Area of the yard that is not pat of the sandbox = Area of the yard - Area of the sandbox

Since both the yard and the sandbox has a rectangular shape, then;

Area of a rectangle = length x width

So that,

Area of the yard = length x width

                            = (6x+7) x 8x

                            = (48[tex]x^{2}[/tex] + 56x) [tex]ft^{2}[/tex]

Area of the sandbox = length x width

                                  = (x+6) x 5x

                                  = (5[tex]x^{2}[/tex] + 30x) [tex]ft^{2}[/tex]

Thus,

Area of the yard that is not pat of the sandbox = (48[tex]x^{2}[/tex] + 56x) - (5[tex]x^{2}[/tex] + 30x)

                                = 48[tex]x^{2}[/tex] + 56x - 5[tex]x^{2}[/tex] - 30x

                                = (43[tex]x^{2}[/tex] - 26x) [tex]ft^{2}[/tex]

Area of the yard that is not pat of the sandbox is (43[tex]x^{2}[/tex] - 26x) [tex]ft^{2}[/tex].