in the accompanying diagram of the unit circle, the ordered pair _ represents the point where the terminal side of 0 intersection in the unit circle

in the accompanying diagram of the unit circle the ordered pair represents the point where the terminal side of 0 intersection in the unit circle class=

Respuesta :

The ordered pair of a unit circle is represented as:

[tex](x,y) \to (\sin(\theta),\cos(\theta))[/tex]

The point where the terminal side of [tex]\tehta[/tex][tex]\theta[/tex] intersect with the unit circle is: 240

The given parameter can be represented as:

[tex](x,y) \to (-\frac{\sqrt 3}{2},-\frac{1}{2})[/tex]

This means that:

[tex]\sin(\theta) = -\frac{\sqrt 3}{2}[/tex]

[tex]\cos(\theta) = -\frac{1}{2}[/tex]

Let the angle between the x-axis and the terminal side be [tex]\alpha[/tex]

So, we have:

[tex]\theta = 180 + \alpha[/tex]

Using [tex]\cos(\theta) = -\frac{1}{2}[/tex]

The equation becomes

[tex]\cos(180 + \alpha) = -\frac{1}{2}[/tex]

Apply cosine formula

[tex]\cos(180)*\cos(\alpha) - \sin(180)*\sin(\alpha) = -\frac{1}{2}[/tex]

[tex]-1*\cos(\alpha) - 0*\sin(\alpha) = -\frac{1}{2}[/tex]

[tex]-1*\cos(\alpha)= -\frac{1}{2}[/tex]

Divide both sides by -1

[tex]\cos(\alpha)= \frac{1}{2}[/tex]

Take arccos of both sides

[tex]\alpha= \cos^{-1}(\frac{1}{2})[/tex]

[tex]\alpha= \cos^{-1}(0.5)[/tex]

[tex]\alpha= 60[/tex]

Recall that:

[tex]\theta = 180 + \alpha[/tex]

[tex]\theta = 180 +60[/tex]

[tex]\theta = 240[/tex]

Read more at:

https://brainly.com/question/11907132