Respuesta :

merue

Answer:

[tex]2\sqrt{51}[/tex]

Step-by-step explanation:

first, you have to look pythagoras theorem (in picture)

then; x² + 14² = 20²

x² + 196 = 400

x² = 204

x = [tex]\sqrt{204}[/tex] = [tex]2\sqrt{51}[/tex]

Hope this helps ^-^

Ver imagen merue

Given:

  • Hypotenuse= 20
  • Side 1= 14

To find:

The length of the unknown side ( x )

Solution:

We'll have to use pythagoras Theorem.

[tex]\huge\boxed{\sf{Formula: {a}^{2} + {b}^{2} = {c}^{2} }}[/tex]

In this question hypotenuse is given so we'll have to subtract.

Let the unknown be "x"

[tex] {c}^{2} = {a}^{2} - {b}^{2} [/tex]

[tex] {x}^{2} = {20}^{2} - {14}^{2} [/tex]

[tex]x = 204[/tex]

[tex] {x}^{2} = \sqrt{204} [/tex]

[tex]x = 14.28285686[/tex]

[tex]\large\boxed{\sf{x = 14.3 \: (nearest \: tenth)}}[/tex]

Hence, the unknown side of the given triangle is 14.3