Answer:
[tex]Q = 1[/tex]
[tex]M = 2[/tex]
Step-by-step explanation:
Solving (a):
Given: 1-32-794182- Q
Required: Find Q
To do this, we first multiply each digit in descending order of 10.
So, we have:
[tex]Product = 1 * 10 + 3 * 9 + 2 * 8 + 7 * 7 + 9 * 6 + 4 * 5 + 1 * 4 + 8 * 3 + 2 * 2 + Q * 1[/tex]
[tex]Product = 208 + Q *1[/tex]
[tex]Product = 208 + Q[/tex]
Equate the modulus of the product by 11 to 0
[tex]Product \% 11 = 0[/tex]
[tex](208 + Q) \% 11 = 0[/tex]
The next number greater than 208 divisible by 11 is 209.
So, we have:
[tex](208 + Q) \% 11 = 209 \% 11[/tex]
Express 209 as 208 + 1
[tex](208 + Q) \% 11 = (208 + 1)\% 11[/tex]
By comparison:
[tex]Q = 1[/tex]
Hence, the checksum is 1
Solving (a):
Given: 2-429-39M18-6
Required: Find M
Apply the same step in (a)
So, we have:
[tex]Product = 2 * 10 + 4 * 9 + 2 * 8 + 9 * 7 + 3 * 6 + 9 * 5 + M * 4 + 1 * 3 + 8 * 2 + 6 * 1[/tex]
[tex]Product = 198 + 4M + 25[/tex]
[tex]Product = 223+ 4M[/tex]
Equate the modulus of the product by 11 to 0
[tex]Product \% 11 = 0[/tex]
[tex](223+ 4M) \% 11 = 0[/tex]
The next number greater than 223 divisible by 11 is 231.
So, we have:
[tex](223+ 4M) \% 11 = 231 \% 11[/tex]
Express 231 as 223 + 8
[tex](223+ 4M) \% 11 = (223 + 8) \% 11[/tex]
By comparison:
[tex]4M = 8[/tex]
Divide both sides by 4
[tex]M = 2[/tex]