NBC News reported on May 2, 2013, that 1 in 20 children in the United States have a food allergy of some sort. Consider selecting a random sample of 15 children and let X be the number in the sample who have a food allergy. Then X ~ Bin(15, 0.05).

a. Determine both P(X <= 3) and P(X < 3).
b. Determine P(X >= 4). c. Determine P(1 <= X <= 3).
d. What are E(X) and Sigma (x)?
e. In a sample of 50 children, what is the probablity that none have a food allergy?

Respuesta :

Answer:

a. [tex]P(x\le 3) = 0.9957[/tex] and [tex]P(x < 3) = 0.965[/tex]

b. [tex]P(X \ge 4) = 0.0043[/tex]

c. [tex]P(1 \le x \le 3)= 0.5313[/tex]

d. [tex]E(x) = 0.75[/tex] and [tex]\sigma(x)= 0.8441[/tex]

e. [tex]P(0) = 0.0769[/tex]

Step-by-step explanation:

Given

X ~ Bin(15, 0.05)

This implies that:

[tex]n = 15[/tex]

[tex]p =0.05[/tex]

A binomial distribution is represented as:

[tex]P(x) = ^nC_x\ p^x\ (1- p)^{n-x}[/tex]

Solving (a):

(i)

[tex]P(x\le 3)[/tex]

This is solved as:

[tex]P(x\le 3) = P(0) + P(1) + P(2) + P(3)[/tex]

[tex]P(0) = ^{15}C_0\ * 0.05^0\ (1- 0.05)^{15-0} = 1 * 1 * 0.95^{15} = 0.4633[/tex]

[tex]P(1) = ^{15}C_1\ * 0.05^1\ (1- 0.05)^{15-1} = 15 * 0.05 * 0.95^{14} = 0.3658[/tex]

[tex]P(2) = ^{15}C_2\ * 0.05^2\ (1- 0.05)^{15-2} = 105 * 0.05^2 * 0.95^{13} = 0.1348[/tex]

[tex]P(3) = ^{15}C_3\ * 0.05^3\ (1- 0.05)^{15-3} = 455 * 0.05^3 * 0.95^{12} = 0.0307[/tex]

So:

[tex]P(x\le 3) = 0.4644 + 0.3658 + 0.1348 + 0.0307[/tex]

[tex]P(x\le 3) = 0.9957[/tex]

(ii)

[tex]P(x < 3) = P(0) + P(1) + P(2)[/tex]

[tex]P(x < 3) = 0.4644 + 0.3658 + 0.1348[/tex]

[tex]P(x < 3) = 0.965[/tex]

Solving (b):

[tex]P(X \ge 4)[/tex]

This is represented as:

[tex]P(x \le 3) + P(X \ge 4) = 1[/tex]

[tex]P(X \ge 4) = 1 - P(x \le 3)[/tex]

[tex]P(X \ge 4) = 1 - 0.9957[/tex]

[tex]P(X \ge 4) = 0.0043[/tex]

Solving (c):

[tex]P(1 \le x \le 3)[/tex]

This is represented as:

[tex]P(1 \le x \le 3) =P(1) + P(2) + P(3)[/tex]

[tex]P(1 \le x \le 3) = P(1) + P(2) + P(3)[/tex]

[tex]P(1 \le x \le 3)= 0.3658 + 0.1348 + 0.0307[/tex]

[tex]P(1 \le x \le 3)= 0.5313[/tex]

Solving (d): E(x) and Sigma(x)

[tex]E(x) = n * p[/tex]

[tex]E(x) = 15 * 0.05[/tex]

[tex]E(x) = 0.75[/tex]

[tex]\sigma(x)= \sqrt{E(x)* (1-p)}[/tex]

[tex]\sigma(x)= \sqrt{0.75* (1 - 0.05)}[/tex]

[tex]\sigma(x)= \sqrt{0.7125}[/tex]

[tex]\sigma(x)= 0.8441[/tex]

Solving (e):

Calculate P(0) when n= 50

Using: [tex]P(x) = ^nC_x\ p^x\ (1- p)^{n-x}[/tex]

[tex]P(0) = ^{50}C_0 * 0.05^0 * (1- 0.05)^{50-0}[/tex]

[tex]P(0) = 1 * 1 * (0.95)^{50}[/tex]

[tex]P(0) = 1 * 1 * 0.0769[/tex]

[tex]P(0) = 0.0769[/tex]