Respuesta :
Answer:
Step-by-step explanation:
[tex]T_j \sim exp ( \lambda j) \ \ \ j = 1 (1) n \\ \\ f_{Tj}(tj) = \lambda j e^{-\lambda j tj } , tj>0 \\ \\ P\Big[ Tj> x\Big] = \int \limits ^{\infty}_{x} \lambda j e^{-\lambda j tj}\ dtj \\ \\ = e^{-\lambda j x}, x > 0 \\ \\ \\ \\ a) F_x (x) \\ \\ = P[X \le x ] \\ \\ = 1 - P[X> x] \\ \\ = 1 - \pi \limits ^{n}_{j =1} \Big\{ P[T_j > x ] \Big \}[/tex]
[tex]\text{This is because the appliance has the capacity to work for more than (x) }[/tex][tex]\text{hours if and only if all the "n" components work more than (x) hours.}[/tex]
[tex]\text{Then:}[/tex]
[tex]= 1 - e \ \pi^{n}_{j=1} \ e^{-\lambda j x} \\ \\ = 1 - e^{- (\sum \limits ^{n}_{j=1} \lambda j)x}[/tex]
∴
[tex]CDF = 1 - e^{- (\sum \limits ^{n}_{j=1} \lambda j)x}\ , \ x>0[/tex]
[tex]PDF =\Big( \sum \limits ^{n}_{j =1} \lambda j\Big) e^{- (\sum \limits ^{n}_{j=1} \lambda j)x}\ , \ x>0[/tex]
[tex]f_x(x) = \Big( \sum \limits ^{n}_{j =1} \lambda j\Big) e^{- (\sum \limits ^{n}_{j=1} \lambda j)x}\ , \ x>0[/tex]
(b)
[tex]E(x) = \int \limits ^{\infty}_{o }x f_x (x) \ dx \\ \\ = \int \limits ^{\infty}_{o }x \ \Big( \sum \limits ^{n}_{j =1} \lambda j\Big) e^{- (\sum \limits ^{n}_{j=1} \lambda j)x}\ , \ dx[/tex]
[tex]= \dfrac{1}{\sum \limits ^n_{j=1} \lambda j} \ \ \int \limits ^{\infty}_{o} \Big [(\sum \limits ^n_{j=1} \lambda j )x \Big] e ^{-\Big ( \sum \limits ^{n}_{j=1} \lambda j \Big)x} \ \ d \Big( x \sum \limits ^n_{j=1} \lambda j \Big)[/tex]
[tex]= \dfrac{1}{\sum \limits ^n_{j= 1} \lambda j} \int \llimits ^{\infty}_{o} t e^{-t} \ dt[/tex]
[tex]= \dfrac{1}{\sum \limits ^n_{j= 1} \lambda j} \int \llimits ^{\infty}_{o} t e^{-t} \ dt \ \ \ \ \text{\Big[By transformation }t =( \sum \limits ^n_{j=1} \lambda j )x \Big][/tex]
[tex]= \dfrac{1}{\sum \limits ^n_{j= 1} \lambda j}[/tex]
(c)
[tex]Let \ \ l_y_{\dfrac{1}{2}} \text{ be the median}[/tex]
∴
[tex]F(l_y_{\dfrac{1}{2}}) = \dfrac{1}{2} \\ \\ 1 - e ^{-\Big (\sum \limits ^{n}_{j=1} \lambda j \Big)} {l_y}_{\frac{1}{2}} = \dfrac{1}{2} \\ \\ \dfrac{1}{2} = e^{-\Big (\sum \limits ^{n}_{j=1} \lambda j \Big) } {l_y}_{\frac{1}{2}} \\ \\ - In 2 = {-\Big (\sum \limits ^{n}_{j=1} \lambda j \Big)} {l_y}_{\frac{1}{2}} \\ \\ \\ \\ \mathbf{ {l_y}_{\frac{1}{2}} = \dfrac{ In \ 2}{\sum \limits ^{n}_{j=1} \lambda j }}[/tex]