Respuesta :

Answer:

62 degrees

Step-by-step explanation:

Since we know 3 sides of the triangle, we can use law of cosines.

[tex] {gk}^{2} = {gh}^{2} + {kh}^{2} - 2(gh)(kh) \times \cos(h) [/tex]

[tex] {8}^{2} = {17}^{2} + {15}^{2} - 2(17(15) \times \cos(h) [/tex]

[tex]64 = 289 + 225 - 510 \times \cos(h) [/tex]

[tex]64 = 314 - 510 \times \cos(h) [/tex]

[tex] - 250 = - 510 \times \cos(h) [/tex]

[tex] \frac{250}{510} = \cos(h) [/tex]

[tex] \frac{25}{53} = \cos(h) [/tex]

Take the arcos or cosine inverse

[tex] \cos {}^{ - 1} = \frac{25}{53} [/tex]

Which is about 62 degrees.