Find the volumes of the solids generated by revolving the regions bounded by the graphs of the equations about the given lines.
y = root x
y = 0
x = 3
the x-axis
the y-axis
the line x = 3
the line x = 6

Respuesta :

Answer:

x-axis = [tex]\frac{9\pi }{2}[/tex]

y-axis = [tex]\frac{4\pi }{5} .3(^{\frac{5}{2} } )[/tex]

Line x =3 :  [tex]\frac{44\sqrt{3} }{5} \pi[/tex]

Line x = 6 : [tex]\frac{84\sqrt{3}\pi }{5}[/tex]

Step-by-step explanation:

Given lines : y = √x

                     y = 0

                     x = 3

To determine the volumes generated we will use the disk method for each of the lines,

attached below is the detailed solution for  line x =3 , same procedure will be repeated for each value of x and y to obtain the given results

The volume generated  ( x axis )

= [tex]\frac{9\pi }{2}[/tex]

volume generated ( y _axis )

=  [tex]\frac{4\pi }{5} .3(^{\frac{5}{2} } )[/tex]

Volume about  x = 3

=  [tex]\frac{44\sqrt{3}\pi }{5}[/tex]

Volume about  x = 6

= [tex]\frac{84\sqrt{3}\pi }{5}[/tex]

Ver imagen batolisis