Answer:
x-axis = [tex]\frac{9\pi }{2}[/tex]
y-axis = [tex]\frac{4\pi }{5} .3(^{\frac{5}{2} } )[/tex]
Line x =3 : [tex]\frac{44\sqrt{3} }{5} \pi[/tex]
Line x = 6 : [tex]\frac{84\sqrt{3}\pi }{5}[/tex]
Step-by-step explanation:
Given lines : y = √x
y = 0
x = 3
To determine the volumes generated we will use the disk method for each of the lines,
attached below is the detailed solution for line x =3 , same procedure will be repeated for each value of x and y to obtain the given results
The volume generated ( x axis )
= [tex]\frac{9\pi }{2}[/tex]
volume generated ( y _axis )
= [tex]\frac{4\pi }{5} .3(^{\frac{5}{2} } )[/tex]
Volume about x = 3
= [tex]\frac{44\sqrt{3}\pi }{5}[/tex]
Volume about x = 6
= [tex]\frac{84\sqrt{3}\pi }{5}[/tex]