Respuesta :
Answer:
A) The null hypothesis is H₀; [tex]\overline x_1[/tex] = [tex]\overline x_2[/tex]
The alternative hypothesis is Hₐ; [tex]\overline x_1[/tex] ≠ [tex]\overline x_2[/tex]
B) The critical value is 4.604
C) The pooled variance is 11,870.2777
D) The standard error is-0.2321
E) The obtained is -0.2040
Step-by-step explanation:
The given values are;
[tex]\overline x_1[/tex] = 23.76, [tex]\overline x_2[/tex] = 34.54
s₁ = 123.43, s₂ = 105.65
n₁ = 5, n₂ = 20
A) The null hypothesis, H₀; [tex]\overline x_1[/tex] = [tex]\overline x_2[/tex]
The alternative hypothesis, Hₐ; [tex]\overline x_1[/tex] ≠ [tex]\overline x_2[/tex]
B) The degrees of freedom, df = 4 - 1 = 3
The critical t-value is given at α = 0.01 is given on the t-table for two tailed test as t = 4.604
C) The pooled variance is given by the following formula;
[tex]S_P^2 = \dfrac{(n_1 - 1) \cdot s_1^2 + (n_2-1) \cdot s_2^2}{n_1 + n_2 - 2 }[/tex]
Plugging in the values gives;
[tex]S_P^2 = \dfrac{(5 - 1) \cdot 123.43^2 + (20-1) \cdot 105.65^2}{5+ 20 - 2 } = 11,870.2777[/tex]
The pooled variance, [tex]s_p^2[/tex] = 11,870.2777
D) The standard error, SE, is given as follows;
[tex]t=\dfrac{(\bar x_{1}-\bar x_{2})}{\sqrt{\dfrac{s_{1}^{2} }{n_{1}}-\dfrac{s _{2}^{2}}{n_{2}}}}[/tex]
Therefore, we get;
[tex]t=\dfrac{(23.76-35.34)}{\sqrt{\dfrac{123.43^{2} }{5}-\dfrac{105.65^{2}}{20}}} = -0.2321[/tex]
The standard error, SE ≈ -0.2321
E) The obtained 't' is given as follows;
[tex]\sigma _{\overline x_1 - \overline x_2} = \sqrt{\dfrac{s_1^2}{n_1-1} +\dfrac{s_2^2}{n_2-1} }[/tex]
Therefore, we have;
[tex]\sigma _{\overline x_1 - \overline x_2} = \sqrt{\dfrac{123.43^2}{5-1} +\dfrac{105.65^2}{20-1} } \approx 56.7564[/tex]
The obtained t is given as follows;
[tex]t(Obtained)=\dfrac{(\bar x_{1}-\bar x_{2})}{\sigma _{\overline x_1 - \overline x_2} }[/tex]
Therefore, we get;
[tex]t(Obtained)=\dfrac{(23.76-34.54)}{56.7564} \approx -0.2040[/tex]
The obtained t = -0.2040