Answer:
[tex]3log2[/tex]
Step-by-step explanation:
Given
[tex]\frac{1}{3} log( \frac{125}{8} ) - 2 log( \frac{2}{5} ) + log( \frac{80}{125} )[/tex]
Required
Solve
Apply logarithm rules
[tex]log( \frac{125^{\frac{1}{3}}}{8^{\frac{1}{3}}} )- log( \frac{2^2}{5^2} ) + log( \frac{80}{125} )[/tex]
[tex]log( \frac{5}{2}} )- log( \frac{4}{25} ) + log( \frac{80}{125} )[/tex]
Apply quotient rule
[tex]log( \frac{5}{2} / \frac{4}{25} ) + log( \frac{80}{125} )[/tex]
[tex]log( \frac{5}{2} * \frac{25}{4} ) + log( \frac{80}{125} )[/tex]
[tex]log( \frac{100}{8} ) + log( \frac{80}{125} )[/tex]
Apply product rule
[tex]log( \frac{100*80}{8*125} )[/tex]
[tex]log( \frac{8000}{1000} )[/tex]
[tex]log(8)[/tex]
Express 8 as 2^3
[tex]log(2^3)[/tex]
[tex]3log2[/tex]