Respuesta :

Given:

[tex]h(1)=9[/tex]

[tex]h(n)=h(n-1)\cdot (-3)[/tex]

To find:

The explicit formula for h(n).

Solution:

We have,

[tex]h(n)=h(n-1)\cdot (-3)[/tex]         ...(i)

It is the recursive formula of a geometric sequence. It is of the form

[tex]a(n)=a(n-1)\cdot r[/tex]         ...(ii)

where r is the common ratio.

On comparing (i) and (ii), we get

[tex]r=-3[/tex]

We have, [tex]h(1)=9[/tex] so the first term of the geometric sequence is [tex]a=9[/tex].

The explicit formula for a geometric sequence is:

[tex]h(n)=ar^{n-1}[/tex]

Substitute a=9 and r=-3 to get the explicit formula for the given sequence.

[tex]h(n)=9(-3)^{n-1}[/tex]

Therefore, the required explicit formula is [tex]h(n)=9(-3)^{n-1}[/tex].