solve using the box method

[tex]\huge\text{Hey there!}[/tex]
[tex]\large\text{Just SIMPLIFY the given EQUATION or find the DIFFERENCE}\\\large\text{OF the SQUARES... Here is the formula: }\mathsf{\bf a^2 - b^2 =(a+b)(a-b)}[/tex]
[tex]\large\text{Equation: }\mathsf{\dfrac{(4x^2-9)}{(2x + 3)}}[/tex]
[tex]\large\text{Rewrite }\mathsf{ 4x^9 - 9}\large\text{ in the formation of }\mathsf{a^2 - b^2}\large\text{ whereas}\mathsf{a = 2x \ \&\ b = 3.}[/tex]
[tex]\large\text{Equation: }\mathsf{\dfrac{(2x)^2-3^2}{2x + 3}}[/tex]
[tex]\large\text{This is where you try to do the DIFFERENCE OF its SQUARES}[/tex]
[tex]\mathsf{\dfrac{(2x + 3)(2x - 3)}{2x + 3}}[/tex]
[tex]\large\text{CANCEL out: }\mathsf{(2x + 3)\ - (2x +3)}\large\text{ because it gives you 0}[/tex]
[tex]\large\text{This leaves us with }\mathsf{\bf 2x - 3}\large\text{ as your POSSIBLE ANSWER}[/tex]
[tex]\boxed{\boxed{\large\text{Answer: \huge \bf 2x - 3}}}\huge\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
[tex]\large\text{Note: There is/are many ways to solve for equations like this.... this was just}\\\large\text{the quickest and easiest way to understand it!}[/tex]