Find the centroid of ABC if
A = (2, 2), B = (-1,0), and C = (8,4).
([?], [ ])

Answer:
The centroid of ABC is (3 , 2).
Step-by-step explanation:
The steps are :
[tex]centre = ( \frac{x1 + x2 + x3}{3} \: , \: \frac{y1 + y2 + y3}{3} )[/tex]
[tex]centre = ( \frac{2 + ( - 1) + 8}{3} \: , \: \frac{2 + 0 + 4}{3} )[/tex]
[tex]centre = ( \frac{9}{3} \: , \: \frac{6}{3} )[/tex]
[tex]centre = (3 \: , \: 2)[/tex]
Answer:
The centroid of ∆ABC is (3 , 2).
Step-by-step explanation:
Solution :
Here's the required formula to find the centroid of ∆ABC :
[tex]{\star{\footnotesize{\purple{\underline{ \boxed{\sf{\pink{Centroid = \bigg( \dfrac{x_1 + x_2 + x_3}{3} \: , \: \dfrac{y_1 + y_2 + y_3}{3} \bigg)}}}}}}}}[/tex]
Where :
Substituting all the given values in the formula to find the centroid of ∆ABC
[tex]{\implies{\small{\sf{Centroid = \bigg( \dfrac{x_1 + x_2 + x_3}{3} \: , \: \dfrac{y_1 + y_2 + y_3}{3} \bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Centroid = \bigg( \dfrac{2 + ( - 1) + 8}{3} \: , \: \dfrac{2 +0 + 4}{3} \bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Centroid = \bigg( \dfrac{2 - 1 + 8}{3} \: , \: \dfrac{2 +0 + 4}{3} \bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Centroid = \bigg( \dfrac{10 - 1}{3} \: , \: \dfrac{2 + 4}{3} \bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Centroid = \bigg( \dfrac{9}{3} \: , \: \dfrac{6}{3} \bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Centroid = \bigg( \cancel\dfrac{9}{3} \: , \: \cancel\dfrac{6}{3} \bigg)}}}}[/tex]
[tex]{\implies{\small{\sf{Centroid = \Big( 3\: , \: 2 \Big)}}}}[/tex]
[tex]\star{\underline{\boxed{\rm{\red{Centroid = \Big( 3\: , \: 2 \Big)}}}}}[/tex]
Hence, the centroid of ∆ABC is (3 , 2).
[tex]\rule{300}{1.5}[/tex]