Write the left side of the identity in terms of sine and cosine. Rewrite the numerator and denominator separately. ​(Do not​ simplify.) Simplify the fraction from the previous step such that both the fractions have the common denominator The expression from the previous step then simplifies to using​ what? A. Addition and a Reciprocal Identity B. Addition and a Pythagorean Identity

Respuesta :

Answer:

[tex](a)[/tex] [tex]\frac{2}{cos\theta}/\frac{1}{sin\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

[tex](b)[/tex] [tex]\frac{2sin\theta}{cos\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

(c) Addition and Quotient identity

Step-by-step explanation:

Given

[tex]\frac{2sec\theta}{csc\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex] --- The expression missing from the question

Solving (a): Write the left hand side in terms of sin and cosine

In trigonometry:

[tex]sec\theta = \frac{1}{cos\theta}[/tex]

and

[tex]csc\theta = \frac{1}{sin\theta}[/tex]

So, the expression becomes:

[tex]\frac{2 * \frac{1}{cos\theta}}{\frac{1}{sin\theta}} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

[tex]\frac{\frac{2}{cos\theta}}{\frac{1}{sin\theta}} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

Rewrite as:

[tex]\frac{2}{cos\theta}/\frac{1}{sin\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

Solving (b): Simplify

[tex]\frac{2}{cos\theta}/\frac{1}{sin\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

Change / to *

[tex]\frac{2}{cos\theta}*\frac{sin\theta}{1} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

[tex]\frac{2sin\theta}{cos\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

Solving (c): The property used

To do this, we need to further simplify

[tex]\frac{2sin\theta}{cos\theta} + \frac{4sin\theta}{cos\theta} =6tan\theta[/tex]

Take LCM

[tex]\frac{2sin\theta+ 4sin\theta}{cos\theta} =6tan\theta[/tex]

Add the numerator

[tex]\frac{6sin\theta}{cos\theta} =6tan\theta[/tex]

Apply quotient identity

[tex]\frac{sin\theta}{cos\theta} = tan\theta[/tex]

This gives

[tex]\frac{6sin\theta}{cos\theta} = 6tan\theta[/tex]

Hence, the properties applied are:

Addition and Quotient identity