Answer:
442 miles
Step-by-step explanation:
Given
To properly solve this question, I illustrate some given parameters using attached image
From the image, apply Pythagoras theorem
[tex]x^2 + 1^2 = y^2[/tex]
Differentiate w.r.t time (t)
[tex]2x\frac{dx}{dt} + 0 = 2y\frac{dy}{dt}[/tex]
[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]
Divide both sides by 2
[tex]x\frac{dx}{dt} = y\frac{dy}{dt}[/tex]
From the question, we have that the plan travels are 510mi/h.
This implies that:
[tex]\frac{dx}{dt} = 510mi/h[/tex]
So, we then calculate the value of x when the distance (y) is 2mi i.e.:
[tex]y = 2mi[/tex]
Apply Pythagoras theorem
[tex]x^2 + 1^2 = y^2[/tex]
[tex]x^2 + 1^2 = 2^2[/tex]
[tex]x^2 + 1 = 4[/tex]
[tex]x^2 = 4-1[/tex]
[tex]x^2 = 3[/tex]
[tex]x = \sqrt 3[/tex]
So, the expression becomes:
[tex]x\frac{dx}{dt} = y\frac{dy}{dt}[/tex]
[tex]\sqrt 3 * 510 = 2* \frac{dy}{dt}[/tex]
[tex]\frac{\sqrt 3 * 510}{2} = \frac{dy}{dt}[/tex]
[tex]\sqrt 3 * 255 = \frac{dy}{dt}[/tex]
[tex]\frac{dy}{dt} = 255\sqrt 3[/tex]
[tex]\frac{dy}{dt} = 255 * 1.7321[/tex]
[tex]\frac{dy}{dt} = 441.655[/tex]
[tex]\frac{dy}{dt} = 442[/tex]
Hence, the distance is 442 miles