Missing Details
Quarters ≡ Dimes ≡ Nickels ≡ Pennies
23 ≡ 29 ≡ 17 ≡ 38
Answer:
[tex]P(Q\ or\ P) = 0.5701[/tex]
Step-by-step explanation:
Given
[tex]Quarters = 23[/tex]
[tex]Dimes = 29[/tex]
[tex]Nickels = 17[/tex]
[tex]Pennies = 38[/tex]
First, we calculate total number of coins
[tex]Total = 23 + 29 + 17 + 38[/tex]
[tex]Total = 107[/tex]
The probability of obtaining quarter (Q) of penny (P) is:
[tex]P(Q\ or\ P) = P(Quarters) + P(Pennies)[/tex]
[tex]P(Q\ or\ P) = \frac{n(Quarters)}{Total} + \frac{n(Pennies)}{Total}[/tex]
Take LCM
[tex]P(Q\ or\ P) = \frac{n(Quarters) + n(Pennies)}{Total}[/tex]
[tex]P(Q\ or\ P) = \frac{23 + 38}{107}[/tex]
[tex]P(Q\ or\ P) = \frac{61}{107}[/tex]
[tex]P(Q\ or\ P) = 0.5701[/tex]