Answer:
Lost Mechanical Power = 7.7565 KW
Head Loss = 26.35 m
Explanation:
First, we will find the useful mechanical power used to transport water to the higher reservoir:
[tex]P_{useful} = \rho ghV[/tex]
where,
P_useful = Useful mechanical Power = ?
ρ = density of water = 1000 kg/m³
g = acceleration due to gravity = 9.81 m/s²
h = height = 45 m
V = Volume flow rate = 0.03 m³/s
Therefore,
[tex]P_{useful} = (1000\ kg/m^3)(9.81\ m/s^2)(45\ m)(0.03\ m^3/s)\\P_{useful} = 13243.5\ W = 13.2435\ KW[/tex]
Now, the lost mechanical power will be:
[tex]Lost\ Mechanical\ Power = Total\ Mechanical\ Power - Useful\ power\\Lost\ Mechanical\ Power = 21\ KW - 13.2435\ KW\\[/tex]
Lost Mechanical Power = 7.7565 KW
Now, for the head loss:
[tex]Lost\ Mechanical\ Power = \rho g(Head\ Loss)V\\Head\ Loss = \frac{Lost\ Mechanical\ Power}{\rho gV} \\\\Head\ Loss = \frac{7756.5\ W}{(1000\ kg/m^3)(9.81\ m/s^2)(0.03\ m^3/s)} \\[/tex]
Head Loss = 26.35 m