Respuesta :

Answer: Our required polynomial is given by

[tex]x+5[/tex]

Step-by-step explanation:

Since we have given that

[tex]f(x)=x^4+5x^3-3x-15[/tex]

And

[tex]q(x)=x^3-3[/tex]

Since we know that

Euclid division lemma states that

[tex]f(x)=q(x)\times g(x)+r(x)[/tex]

where,

[tex]f(x)\text{ denotes the dividend}\\g(x)\text{ denotes the required polynomial}\\q(x)\text{ denotes the quotient}\\r(x)\text{ denotes the remainder}\\[/tex]

Now,

[tex]x^4+5x^3-3x-15=x^3-3\times g(x)+0[/tex]

So, our equation becomes

[tex]g(x)\\\\=\frac{x^4+5x^3-3x-15}{x^3-3}\\\\=x+5[/tex]

So, our required polynomial is given by

[tex]x+5[/tex]

Answer:

Dividend

 [tex]=x^4 + 5 x^3 - 3 x - 15[/tex]

Divisor

[tex]=x^3-3[/tex]

The rule of division of polynomial which is same as division of real numbers states that

Dividend = Divisor × Quotient + Remainder

The division process is shown below.

Quotient = x+5

Remainder =0

Ver imagen Аноним