Two systems of equations are shown. The first equation in system B is the original equation in system A. The second equation in system B is the sum of that equation and a multiple of the second equation in system A.

Respuesta :

Answer:

[tex]x = 3.875[/tex]

[tex]y = 2.375[/tex]

Step-by-step explanation:

See comment for complete question.

Given

A.

[tex]x + 3y = 11 => x + 3y = 11[/tex]

[tex]5x - y = 17 => 15x - 3y = 51[/tex]

[tex]16x = 62[/tex]

B.

[tex]x + 3y = 11[/tex]

[tex]16x = 62[/tex]

Required

Determine the values of x and y

The first equation in B is:

[tex]x + 3y = 11[/tex]

In (a): 5x - y = 17 is multiplied by 3, then added to x + 3y = 11.

So, the second equation is:

[tex]5x - y = 17[/tex]

Solving (a) & (b):

[tex]x + 3y = 11[/tex]  --- (1)

[tex]5x - y = 17[/tex] ---- (2)

Make x the subject in (1)

[tex]x + 3y = 11[/tex]

[tex]x = 11 - 3y[/tex]

Substitute [tex]11 - 3y[/tex] for x in [tex]5x - y = 17[/tex]

[tex]5(11 - 3y) - y = 17[/tex]

Open bracket

[tex]55 - 15y - y = 17[/tex]

[tex]55 - 16y = 17[/tex]

Collect Like Terms

[tex]- 16y = 17-55[/tex]

[tex]- 16y = -38[/tex]

Solve for y

[tex]y = \frac{-38}{-16}[/tex]

[tex]y = \frac{38}{16}[/tex]

[tex]y = 2.375[/tex]

Substitute 2.375 for y in [tex]x = 11 - 3y[/tex]

[tex]x = 11 - 3 * 2.375[/tex]

[tex]x = 11 - 7.125[/tex]

[tex]x = 3.875[/tex]

Answer:

(4,3)

Step-by-step explanation:

I took the test.