Answer:
[tex]j(s) = 0.05s -500[/tex]
Step-by-step explanation:
Given
[tex]Base\ Salary = 2000[/tex]
[tex]Commission = 5\%[/tex] on Sales over 50000
Required
Determine the function j(s) for sales over 50000
Represent the total sales in a month with s.
Sales over 50000 in that month will be: s - 50000
So, the function j(s) is:
j(s) = Base Amount + Commission * Sales over 50000
[tex]j(s) = 2000 + 5\% * (s - 50000)[/tex]
Convert % to decimal
[tex]j(s) = 2000 + 0.05 * (s - 50000)[/tex]
Open bracket
[tex]j(s) = 2000 + 0.05 * s - 0.05 * 50000[/tex]
[tex]j(s) = 2000 + 0.05s - 2500[/tex]
Collect Like Terms
[tex]j(s) = 0.05s - 2500 + 2000[/tex]
[tex]j(s) = 0.05s -500[/tex]