Respuesta :

Answer:

Lines A and C are parallel

Lines B and D are perpendicular

Step-by-step explanation:

Given

See attachment for lines A to D

Required

Determine the parallel and perpendicular lines

To start with, we calculate the slope of each line.

Line A

The points on line A are:

[tex](x_1,y_1) = (3,-4)[/tex]

[tex](x_2,y_2) = (-1,2)[/tex]

Calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{2 - (-4)}{-1 - 3}[/tex]

[tex]m = \frac{2 +4}{-4}[/tex]

[tex]m = \frac{6}{-4}[/tex]

[tex]m_1 = -\frac{3}{2}[/tex]

Line B

[tex](x_1,y_1) = (-1,8)[/tex]

[tex](x_2,y_2) = (2,6)[/tex]

Calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{6 - 8}{2 -(-1)}[/tex]

[tex]m = \frac{-2}{2 +1}[/tex]

[tex]m_2 = -\frac{2}{3}[/tex]

Line C

[tex]y - 9 = -\frac{3}{2}(x + 8)[/tex]

Open bracket

[tex]y - 9 = -\frac{3}{2}x -\frac{3}{2}* 8[/tex]

[tex]y - 9 = -\frac{3}{2}x -3* 4[/tex]

[tex]y - 9 = -\frac{3}{2}x -12[/tex]

Make y the subject

[tex]y = -\frac{3}{2}x -12+9[/tex]

[tex]y = -\frac{3}{2}x -3[/tex]

The slope intercept of an equation is: [tex]y = mx + b[/tex]

Where

[tex]m = slope[/tex]

By comparison:

[tex]m_3 = -\frac{3}{2}[/tex]

Line D

[tex]12x - 8y = 40[/tex]

Subtract 12x from both sides

[tex]12x-12x - 8y = -12x+40[/tex]

[tex]- 8y = -12x+40[/tex]

Divide through by -8

[tex]\frac{- 8y}{-8} = \frac{-12x}{-8}+\frac{40}{-8}[/tex]

[tex]y= \frac{12x}{8}-\frac{40}{8}[/tex]

[tex]y= \frac{3}{2}x-5[/tex]

The slope intercept of an equation is: [tex]y = mx + b[/tex]

Where

[tex]m = slope[/tex]

By comparison:

[tex]m_4 = \frac{3}{2}[/tex]

So, the slopes of the lines are:

[tex]m_1 = -\frac{3}{2}[/tex]      [tex]m_2 = -\frac{2}{3}[/tex]     [tex]m_3 = -\frac{3}{2}[/tex]       [tex]m_4 = \frac{3}{2}[/tex]

Lines with the same slope are parallel.

So:

Lines A and C with slope of [tex]-\frac{3}{2}[/tex] are parallel

Lines with the following relationship are perpendicular:

[tex]m * M = -1[/tex]

Lines B and D are perpendicular because:

[tex]-\frac{2}{3} * \frac{3}{2} = -1[/tex]

[tex]-\frac{6}{6} = -1[/tex]

[tex]-1 = -1[/tex]

Ver imagen MrRoyal