Respuesta :

Answer:

[tex]x=2[/tex]

Step-by-step explanation:

We are given:

[tex]\displaystyle \frac{w^{-x+4}}{w^{-3}}=w^{2x+1}[/tex]

First, by the quotient property:

[tex]w^{(-x+4)-(-3)}=w^{2x+1}[/tex]

Since they both have the same base, their exponents must be equivalent:

[tex](-x+4)-(-3)=2x+1[/tex]

Solve for x. Simplify:

[tex]-x+7=2x+1[/tex]

Therefore:

[tex]3x=6\Rightarrow x=2[/tex]

Answer:

x=2

Step-by-step explanation:

:]