Answer:
[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}=-\frac{1}{4}[/tex]
Step-by-step explanation:
Given the expression
[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}[/tex]
Let us solve the expression
[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}=\frac{-\frac{5}{6}}{\frac{10}{3}}[/tex]
Apply fraction rule: [tex]\frac{-a}{b}=-\frac{a}{b}[/tex]
[tex]=-\frac{\frac{5}{6}}{\frac{10}{3}}[/tex]
Divide fractions: [tex]\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}[/tex]
[tex]=-\frac{5\cdot \:3}{6\cdot \:10}[/tex]
Multiply the numbers: [tex]6\cdot \:10=60[/tex]
[tex]=-\frac{5\cdot \:3}{60}[/tex]
Multiply the numbers: [tex]5\cdot \:3=15[/tex]
[tex]=-\frac{15}{60}[/tex]
Cancel the common factor: 15
[tex]=-\frac{1}{4}[/tex]
Therefore, we conclude that the equivalent expression is:
[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}=-\frac{1}{4}[/tex]