Respuesta :

Answer:

[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}=-\frac{1}{4}[/tex]

Step-by-step explanation:

Given the expression

[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}[/tex]

Let us solve the expression

[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}=\frac{-\frac{5}{6}}{\frac{10}{3}}[/tex]

Apply fraction rule:  [tex]\frac{-a}{b}=-\frac{a}{b}[/tex]

         [tex]=-\frac{\frac{5}{6}}{\frac{10}{3}}[/tex]

Divide fractions:  [tex]\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}[/tex]

         [tex]=-\frac{5\cdot \:3}{6\cdot \:10}[/tex]

Multiply the numbers: [tex]6\cdot \:10=60[/tex]

         [tex]=-\frac{5\cdot \:3}{60}[/tex]

Multiply the numbers:  [tex]5\cdot \:3=15[/tex]

         [tex]=-\frac{15}{60}[/tex]

Cancel the common factor:  15

         [tex]=-\frac{1}{4}[/tex]

Therefore, we conclude that the equivalent expression is:

[tex]\frac{\left(-\frac{5}{6}\right)}{\left(\frac{10}{3}\right)}=-\frac{1}{4}[/tex]