determine if JK and LM parallel, perpendicular, or neither .

Answer:
3 - Perpendicular.
4 - Parallel.
Step-by-step explanation:
[tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
[tex]JK = \frac{1-(-7)}{-4-(-10)} = \frac{8}{6} = \frac{4}{3}[/tex]
[tex]LM = \frac{-2-2}{-6-(-3)} = \frac{-4}{3}[/tex]
Perpendicular, because two lines are considered perpendicular if their slopes are opposite reciprocals.
[tex]JK = \frac{-2-(-2)}{3-11} = \frac{0}{-8} = 0[/tex]
[tex]LM = \frac{-2-(-7)}{1-1} = \frac{5}{0} = 0[/tex]