Answer:
Following are the solution to the given points:
Step-by-step explanation:
For point (a) :
In this, two points are exclusive to one another, it is a probability that first or the second project will have breaches,
[tex]\to P = P(A) + P(B)[/tex]
[tex]= 0.3 + 0.25\\\\= 0.55[/tex]
Since the p(A & B)=0 is mutually exclusive.
For point (b):
[tex]\to P = ( \frac{1 -p(A)) \times P(B)}{((1-P(A)) \times P(B) + P(A&B)}) \\\\[/tex]
[tex]= \frac{(1 -0.3)\times 0.25}{(1-0.3)*0.25 + 0} \\\\ = 1[/tex]
For point (c):
if both a and b are independent:
(a):
[tex]P = P(A) + P(B) - P(A)\times P(B) \\\\[/tex]
[tex]= 0.3 + 0.25 - 0.3 \times 0.25\\\\ = 0.475[/tex]
(b):
[tex]P = \frac{(1 -p(A)) \times P(B)}{((1-P(A)) \timesP(B) + P(A&B))} \\\\[/tex]
[tex]= \frac{(1 - 0.3)\times 0.25}{((1-0.3)\times0.25 + 0.3\times0.25)}\\\\ = 0.7[/tex]