Respuesta :

Answer:

x = y = 4[tex]\sqrt{2}[/tex]

Step-by-step explanation:

Using the cosine ratio in the right triangle and the exact value

cos45° = [tex]\frac{\sqrt{2} }{2}[/tex]  , then

cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{x}{8}[/tex] ( multiply both sides by 8 )

8 × cos45° = x , then

x = 8 × [tex]\frac{\sqrt{2} }{2}[/tex] = 4[tex]\sqrt{2}[/tex]

The third angle in the triangle = 45° ( sum of angles in triangle )

Then the triangle is isosceles with congruent legs, thus

x = y = 4[tex]\sqrt{2}[/tex]