Respuesta :
Answer:
[tex]4T1 - T3 - T2= 45[/tex]
[tex]4T2- T1 - T4 = 75[/tex]
[tex]4T3- T1 - T4 = 75[/tex]
[tex]4T4 - T2 - T3= 105[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{cccc}{ } & {30} & {30} & { } & {15} & {T1} &{T2} & {45} & {15} & {T3} & {T4} & {45} & {} & {60} & {60} & {} \ \end{array}[/tex]
Required
Set up 4 linear equations to solve for T1,T2,T3, andT4
From the question, we understand that each temperature is the average of the 4 surrounding temperatures.
So, we have:
For T1, the surrounding temperatures are: 30, 15, T3 and T2.
The average is:
[tex]T1 = \frac{1}{4}(30 + 15 + T3 + T2)[/tex]
[tex]T1 = \frac{1}{4}(45 + T3 + T2)[/tex]
Multiply through by 4
[tex]4T1 = 45 + T3 + T2[/tex]
Equate variables to constant
[tex]4T1 - T3 - T2= 45[/tex]
For T2, the surrounding temperatures are: T1, T4, 45 and 30.
The average is:
[tex]T2 = \frac{1}{4}(T1 + T4 + 45 + 30)[/tex]
[tex]T2 = \frac{1}{4}(T1 + T4 + 75)[/tex]
Multiply through by 4
[tex]4T2 = T1 + T4 + 75[/tex]
Equate variables to constant
[tex]4T2- T1 - T4 = 75[/tex]
For T3, the surrounding temperatures are: 60, 15, T1 and T4
The average is:
[tex]T3 = \frac{1}{4}(60 + 15 + T1 + T4)[/tex]
[tex]T3 = \frac{1}{4}(75 + T1 + T4)[/tex]
Multiply through by 4
[tex]4T3 = 75 + T1 + T4[/tex]
Equate variables to constant
[tex]4T3- T1 - T4 = 75[/tex]
For T4, the surrounding temperatures are: 60, 45, T2 and T3
The average is:
[tex]T4 = \frac{1}{4}(60 + 45 + T2 + T3)[/tex]
[tex]T4 = \frac{1}{4}(105 + T2 + T3)[/tex]
Multiply through by 4
[tex]4T4 = 105 + T2 + T3[/tex]
Equate variables to constant
[tex]4T4 - T2 - T3= 105[/tex]
So, the equations are:
[tex]4T1 - T3 - T2= 45[/tex]
[tex]4T2- T1 - T4 = 75[/tex]
[tex]4T3- T1 - T4 = 75[/tex]
[tex]4T4 - T2 - T3= 105[/tex]