Answer:
[tex]K = \frac{h'}{8 m \ \Delta x^2}[/tex]K
Explanation:
The Heisenberg uncertainty principle is
Δx Δp ≥ h' / 2
h’ =[tex]\frac{h}{2\pi }[/tex]
The kinetic energy of a particle is
K = ½ m v²
p = mv
v = [tex]\frac{p}{m}[/tex]
substitute
K = [tex]\frac{1}{2} \frac{p^2}{m}[/tex]
from the uncertainty principle,
Δp = [tex]\frac{h'}{2 \ \Delta x}[/tex]
we substitute
K = [tex]\frac{1}{2m} ( \frac{h'}{2 \ \Delta x})^2[/tex]
[tex]K = \frac{h'}{8 m \ \Delta x^2}[/tex]