Respuesta :

Given:

Consider the value of [tex]a+b\sqrt{5}[/tex] is [tex](\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})[/tex].

To find:

The values of a and b.

Solution:

According to the given information,

[tex]a+b\sqrt{5}=(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})[/tex]

[tex]a+b\sqrt{5}=(\sqrt{5})^2-(\sqrt{3})^2[/tex]            [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

[tex]a+b\sqrt{5}=5-3[/tex]

[tex]a+b\sqrt{5}=2[/tex]

It can be written as

[tex]a+b\sqrt{5}=2+0\sqrt{5}[/tex]

On comparing both sides, we get

[tex]a=2,b=0[/tex]

Therefore, the value of a is 2 and the value of b is equal to 0.