Given:
Consider the value of [tex]a+b\sqrt{5}[/tex] is [tex](\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})[/tex].
To find:
The values of a and b.
Solution:
According to the given information,
[tex]a+b\sqrt{5}=(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})[/tex]
[tex]a+b\sqrt{5}=(\sqrt{5})^2-(\sqrt{3})^2[/tex] [tex][\because a^2-b^2=(a-b)(a+b)][/tex]
[tex]a+b\sqrt{5}=5-3[/tex]
[tex]a+b\sqrt{5}=2[/tex]
It can be written as
[tex]a+b\sqrt{5}=2+0\sqrt{5}[/tex]
On comparing both sides, we get
[tex]a=2,b=0[/tex]
Therefore, the value of a is 2 and the value of b is equal to 0.