Answer:
[tex]A'' = (6, -34)[/tex]
Step-by-step explanation:
Given (Points)
[tex]C = (-3,8)[/tex]
[tex]A = (3,-9)[/tex]
[tex]P = (-1,-10)[/tex]
Transformations:
Dilation: Center (0,0); Scale factor = 5
Translation: (x, y) --> (x-9,y +11).
Required
Determine the image of A
[tex]A = (3,-9)[/tex]
Apply the first transformation:
i.e. dilation by a scale factor of 5
[tex]A'=A * 5[/tex]
[tex]A'=(3,-9) * 5[/tex]
[tex]A'=(3* 5,-9* 5)[/tex]
[tex]A'=(15,-45)[/tex]
Apply the second transformation:
i.e. translation: (x, y) --> (x-9,y +11).
[tex]A'=(15,-45)[/tex]
[tex]A'' = (15 - 9, -45 + 11)[/tex]
[tex]A'' = (6, -34)[/tex]
Hence, the image of A is (6,-34)