CAP has vertices
C(-3,8),
A(3,-9),
and
P-1,-10).

What are the coordinates of the image of
A after the given composition of tranformations?

Dilation: center (0, 0); scale factor 5,
Translation: (x, y) (x-9,y +11).

CAP has vertices C38 A39 and P110 What are the coordinates of the image of A after the given composition of tranformations Dilation center 0 0 scale factor 5 Tr class=

Respuesta :

Answer:

[tex]A'' = (6, -34)[/tex]

Step-by-step explanation:

Given (Points)

[tex]C = (-3,8)[/tex]

[tex]A = (3,-9)[/tex]

[tex]P = (-1,-10)[/tex]

Transformations:

Dilation: Center (0,0); Scale factor = 5

Translation: (x, y) --> (x-9,y +11).

Required

Determine the image of A

[tex]A = (3,-9)[/tex]

Apply the first transformation:

i.e. dilation by a scale factor of 5

[tex]A'=A * 5[/tex]

[tex]A'=(3,-9) * 5[/tex]

[tex]A'=(3* 5,-9* 5)[/tex]

[tex]A'=(15,-45)[/tex]

Apply the second transformation:

i.e. translation: (x, y) --> (x-9,y +11).

[tex]A'=(15,-45)[/tex]

[tex]A'' = (15 - 9, -45 + 11)[/tex]

[tex]A'' = (6, -34)[/tex]

Hence, the image of A is (6,-34)