Respuesta :

Given:

The endpoints of a line segment are (-5,12) and (-5,0).

To find:

The coordinates of a points which divides the line segment in 2:1.

Solution:

Section formula: If a point divides a line segment in m:n.

[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]

Let point P divides the given line segment in 2:1. They, by using section formula, we get

[tex]P=\left(\dfrac{2(-5)+1(-5)}{2+1},\dfrac{2(0)+1(12)}{2+1}\right)[/tex]

[tex]P=\left(\dfrac{-10-5}{3},\dfrac{0+12}{3}\right)[/tex]

[tex]P=\left(\dfrac{-15}{3},\dfrac{12}{3}\right)[/tex]

[tex]P=\left(-5,4\right)[/tex]

Therefore, the coordinate of the point that partitions the given segment in the ratio 2:1 are (-5,4).