Respuesta :

Given:

[tex]\Delta MAT\cong \Delta MHT[/tex] and [tex]m\angle 2=82^\circ[/tex].

To find:

Whether [tex]m\angle 1=47^\circ[/tex] is possible or not.

Solution:

We have,

[tex]\Delta MAT\cong \Delta MHT[/tex]

[tex]\angle AMT\cong \angle HMT[/tex]                      (CPCTC)

[tex]m\angle 3=m\angle 8[/tex]              ...(i)

And,

[tex]m\angle 1=m\angle 8[/tex]              ...(ii)        (Vertically opposite angles)

From (i) and (ii), we get

[tex]m\angle 1=m\angle 3[/tex]              ...(iii)

Now,

[tex]m\angle 1+m\angle 2+m\angle 3=180^\circ[/tex]          (Linear pair)

[tex]m\angle 1+82^\circ+m\angle 1=180^\circ[/tex]             (Using (iii))

[tex]2m\angle 1=180^\circ-82^\circ[/tex]

[tex]2m\angle 1=98^\circ[/tex]

Divide both sides by 2.

[tex]m\angle 1=\dfrac{98^\circ}{2}[/tex]

[tex]m\angle 1=49^\circ[/tex]

The measure of angle 1 is 49 degrees so it cannot be equal to 47 degrees.

Therefore, the required answer is "no", the given statement [tex]m\angle 1=47^\circ[/tex] is not possible.