Respuesta :

Given:

M(4,2) is the midpoint of AB and A(-5, -3).

To find:

The coordinates of B.

Solution:

Let the coordinates of point B are (a,b).

Midpoint formula:

[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]

M(4,2) is the midpoint of AB and A(-5, -3).

[tex]M=\left(\dfrac{-5+a}{2},\dfrac{-3+b}{2}\right)[/tex]

[tex](4,2)=\left(\dfrac{-5+a}{2},\dfrac{-3+b}{2}\right)[/tex]

On comparing both sides, we get

[tex]4=\dfrac{-5+a}{2}[/tex]

[tex]8=-5+a[/tex]

[tex]8+5=a[/tex]

[tex]13=a[/tex]

And,

[tex]2=\dfrac{-3+b}{2}[/tex]

[tex]4=-3+b[/tex]

[tex]4+3=b[/tex]

[tex]7=b[/tex]

Therefore, the coordinates of point B are (13,7).