Respuesta :

Answer:

[tex]y = -\frac{3}{5}x -\frac{8}{5}[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (-1,-1)[/tex]

[tex](x_2,y_2) = (4,-4)[/tex]

Required

Determine the line equation

First, calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{-4 - (-1)}{4 - (-1)}[/tex]

[tex]m = \frac{-4 +1}{4 +1}[/tex]

[tex]m = \frac{-3}{5}[/tex]

[tex]m = -\frac{3}{5}[/tex]

The equation is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex]

This gives:

[tex]y - (-1) = -\frac{3}{5}(x - (-1))[/tex]

[tex]y + 1 = -\frac{3}{5}(x +1))[/tex]

Open bracket

[tex]y + 1 = -\frac{3}{5}x -\frac{3}{5}[/tex]

Make y the subject

[tex]y = -\frac{3}{5}x -\frac{3}{5}-1[/tex]

[tex]y = -\frac{3}{5}x +\frac{-3-5}{5}[/tex]

[tex]y = -\frac{3}{5}x +\frac{-8}{5}[/tex]

[tex]y = -\frac{3}{5}x -\frac{8}{5}[/tex]