Answer:
[tex]p-value = 0.9953[/tex]
Step-by-step explanation:
Given
[tex]P = 40\%[/tex] --- proportion of population
[tex]n = 200[/tex] -- samples
[tex]p = 31\%[/tex] -- proportion of samples
Required
Determine the p value
First, calculate the standard deviation ([tex]\sigma[/tex])
[tex]\sigma = \sqrt{\frac{P*(1 - P)}{n}}[/tex]
[tex]\sigma = \sqrt{\frac{40\%*(1 - 40\%)}{200}}[/tex]
[tex]\sigma = \sqrt{\frac{0.40*(1 - 0.40)}{200}}[/tex]
[tex]\sigma = \sqrt{\frac{0.40*0.60}{200}}[/tex]
[tex]\sigma = \sqrt{\frac{0.24}{200}}[/tex]
[tex]\sigma = \sqrt{0.0012}[/tex]
[tex]\sigma = 0.0346[/tex]
Next, we calculate the z score
[tex]z = \frac{p - P}{\sigma}[/tex]
[tex]z = \frac{40\% - 31\%}{0.0346}[/tex]
[tex]z = \frac{9\%}{0.0346}[/tex]
[tex]z = \frac{0.09}{0.0346}[/tex]
[tex]z = 2.6012[/tex]
[tex]z \approx 2.60[/tex]
From the z table, the p value of [tex]z = 2.60[/tex] is: 0.9953
Hence:
[tex]p-value = 0.9953[/tex]