Answer:
the work done on the gas is 4,988.7 J.
Explanation:
Given;
number of moles of the monoatomic gas, n = 4 moles
initial temperature of the gas, T₁ = 300 K
final temperature of the gas, T₂ = 400 K
The work done on the gas is calculated as;
[tex]W = \Delta U = nC_v(T_2 -T_1)[/tex]
For monoatomic ideal gas: [tex]C_v = \frac{3}{2} R[/tex]
[tex]W = \frac{3}{2} R \times n(T_2-T_1)[/tex]
Where;
R is ideal gas constant = 8.3145 J/K.mol
[tex]W = \frac{3}{2} R \times n(T_2-T_1) \\\\W = \frac{3}{2} (8.3145) \times 4(400-300) \\\\W = \frac{3}{2} (8.3145) \times 4(100)\\\\W = 4,988.7 \ J[/tex]
Therefore, the work done on the gas is 4,988.7 J.